Semantic Frame Labeling with Target-based Neural Model

نویسندگان

  • Yukun Feng
  • Dong Yu
  • Jian Xu
  • Chunhua Liu
چکیده

This paper explores the automatic learning of distributed representations of the target’s context for semantic frame labeling with target-based neural model. We constrain the whole sentence as the model’s input without feature extraction from the sentence. This is different from many previous works in which local feature extraction of the targets is widely used. This constraint makes the task harder, especially with long sentences, but also makes our model easily applicable to a range of resources and other similar tasks. We evaluate our model on several resources and get the state-of-the-art result on subtask 2 of SemEval 2015 task 15. Finally, we extend the task to word-sense disambiguation task and we also achieve a strong result in comparison to state-of-the-art work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments

Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a seq...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Shallow Semantic Parsing for Spoken Language Understanding

Most Spoken Dialog Systems are based on speech grammars and frame/slot semantics. The semantic descriptions of input utterances are usually defined ad-hoc with no ability to generalize beyond the target application domain or to learn from annotated corpora. The approach we propose in this paper exploits machine learning of frame semantics, borrowing its theoretical model from computational ling...

متن کامل

Semantic Roles for SMT: A Hybrid Two-Pass Model

We present results on a novel hybrid semantic SMT model that incorporates the strengths of both semantic role labeling and phrase-based statistical machine translation. The approach avoids major complexity limitations via a two-pass architecture. The first pass is performed using a conventional phrase-based SMT model. The second pass is performed by a re-ordering strategy guided by shallow sema...

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017